Atomic Energy Central School, Indore

Class XII Chemistry CO-ORDINATION COMPOUNDS Worksheet 1/6

Questions

1. On the basis of the following observations made with aqueous solutions, assign secondary and primary valences to metals in the following compounds and also write their formulae:

Formula	Moles of AgCl precipitated per mole of
	the compounds with excess AgNO ₃
(i) PdCl₂.4NH₃	2
(ii) NiCl ₂ .6H ₂ O	2
(iii) PtCl₄.2HCl	0
(iv) CoCl ₃ .4NH ₃	1
(v) PtCl ₂ .2NH ₃	0

2. What is meant by unidentate, didentate and ambidentate ligands? Give two examples for each.

3. FeSO₄ solution mixed with $(NH_4)_2SO_4$ solution in 1:1 molar ratio gives the test of Fe²⁺ ion but CuSO₄ solution mixed with aqueous ammonia in 1:4 molar ratio doesn't give the test of Cu²⁺ ion. Explain why?

4. Explain with two examples each of homoleptic and heteroleptic complexes.

5. Specify the oxidation numbers & co-ordination numbers of the metals in these coordination entities:

(i) $[Co(H_2O)(CN)(en)_2]^{2+}$ (ii) $[PtCl_4]^{2-}$ (iii) $[Cr(NH_3)_3Cl_3]$ (iv) $[CoBr_2(en)_2]^{+}$ (v) $K_3[Fe(CN)_6]$

Answers

1.

Formula	No of primary	No of primary	Formula
	valencies	valencies	
(i) PdCl ₂ .4NH ₃	2	4	[Pd(NH ₃) ₄]Cl ₂
(ii) NiCl ₂ .6H ₂ O	2	6	$[Ni(H_2O)_6]Cl_2$
(iii) PtCl ₄ .2HCl	0	6	[Pt(Cl) ₄ (HCl) ₂]
(iv) CoCl ₃ .4NH ₃	1	6	[Co(NH ₃) ₄ Cl ₂]Cl
(v) PtCl ₂ .2NH ₃	0	4	$[Pt(NH_3)_2CI_2]$

2. When a ligand is bound to a metal ion through a single donor atom, the ligand is said to be **unidentate.** Ex. CI^- or NH_3

When a ligand can bind through two donor atoms, the ligand is said to be **didentate**.

Ex. $H_2NCH_2CH_2NH_2$ (ethane-1,2-diamine) and $C_2O_4^{2-}$ (oxalate)

- Ligand which can ligate through two different atoms is called **ambidentate ligand**. Ex: NO_2^- , SCN⁻ 3. FeSO₄ solution mixed with $(NH_4)_2SO_4$ solution give free ions of Fe²⁺ ion in solution. So it gives test. When CuSO₄ solution is mixed with aqueous ammonia, it forms a complex $[Cu(NH_3)_4]^{2+}$. As Cu²⁺ is bound to the ligands, it will not give the test.
- 4. Complexes in which a metal is bound to only one kind of donor groups, are known as homoleptic. *e.g.*, [Co(NH₃)₆]³⁺. Complexes, in which a metal is bound to more than one kind of donor groups, are known as heteroleptic. *e.g.*, [Co(NH₃)₄Cl₂]⁺

5. (i)Co = +3 , CN= 6 (ii)Pt = +2 , CN=4 (iii)Cr = +3, CN= 6 (iv) Co = +3, CN= 6 (v) Fe = +3, CN= 6

Agitha R Menon PGT, Chemistry